1. Consider this diagram:

What is the potential difference across the 40.Ω resistor in the circuit above?

A \(7.5 \times 10^{-3} \text{ V}\)
B 12 V
C 120 V
D 130 V

2. Consider this diagram:

What voltage will be recorded by the voltmeter in the circuit above?

A 50 V
B 100 V
C 200 V
D 400 V
3. A simple series circuit consists of a battery and resistor. Which battery and resistor combination will give the greatest current in the circuit?

A

\[\text{3 V} \quad \text{5 \Omega} \]

B

\[\text{5 V} \quad \text{3 \Omega} \]

C

\[\text{10 V} \quad \text{8 \Omega} \]

D

\[\text{8 V} \quad \text{10 \Omega} \]

4. A 40.-Ω resistor is attached to a 12-volt battery as shown below.

\[\text{12 V} \quad \text{40. \Omega} \]

How many coulombs of charge pass through the resistor in 5.0 minutes?

A 0.30 C

B 1.5 C

C 60. C

D 90. C

5. A circuit has 3 identical resistors in series attached to a battery. When one of the resistors is removed and the circuit is reconnected, which of the following will occur?

A The total resistance and the total current decrease.

B The total resistance decreases, and the total current increases.

C The total resistance increases, and the total current decreases.

D The total resistance and the total current increase.
6. Consider this diagram:

What resistance, R, will result in the current and voltage measurements shown?

A 0.33 Ω
B 3.0 Ω
C 6.0 Ω
D 12 Ω

7. Three different resistors are connected in parallel in a circuit containing a battery. Which statement is true for each resistor?

A The current through each is the same.
B The power used in each is the same.
C The voltage across each is the same.
D The capacitance of each is the same.
8. The circuit in which of the following diagrams would have the \textit{greatest} current?

A

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{imageA}
\end{figure}

B

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{imageB}
\end{figure}

C

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{imageC}
\end{figure}

D

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{imageD}
\end{figure}
9. A light bulb is connected across a 6.0-V potential difference. The current in the circuit is measured at 0.75 A. What is the power rating of the light bulb?

A 1.3 W
B 4.5 W
C 6.8 W
D 8.0 W

10. A 120-V heater draws 12.0 A of current. What is the power rating of the heater?

A 10.0 W
B 132 W
C 1,440 W
D 17,300 W

11. Ten volts are applied across a 100-Ω resistor. How many watts are dissipated by the resistor?

A 1 W
B 10 W
C 100 W
D 1,000 W

End of Goal 10 Sample Items

In compliance with federal law, including the provisions of Title IX of the Education Amendments of 1972, the Department of Public Instruction does not discriminate on the basis of race, sex, religion, color, national or ethnic origin, age, disability, or military service in its policies, programs, activities, admissions or employment.
1. **Objective 10.01**
Analyze and measure the relationship among potential difference, current, and resistance in a direct current circuit.
Thinking Skill: Analyzing
Correct Answer: B

2. **Objective 10.01**
Analyze and measure the relationship among potential difference, current, and resistance in a direct current circuit.
Thinking Skill: Analyzing
Correct Answer: C

3. **Objective 10.01**
Analyze and measure the relationship among potential difference, current, and resistance in a direct current circuit.
Thinking Skill: Generating
Correct Answer: B

4. **Objective 10.01**
Analyze and measure the relationship among potential difference, current, and resistance in a direct current circuit.
Thinking Skill: Analyzing
Correct Answer: D

5. **Objective 10.02**
Analyze and measure the relationship among current, voltage, and resistance in series and parallel circuits.
Thinking Skill: Generating
Correct Answer: B

6. **Objective 10.02**
Analyze and measure the relationship among current, voltage, and resistance in series and parallel circuits.
Thinking Skill: Analyzing
Correct Answer: B

7. **Objective 10.02**
Analyze and measure the relationship among current, voltage, and resistance in series and parallel circuits.
Thinking Skill: Integrating
Correct Answer: C

8. **Objective 10.02**
Analyze and measure the relationship among current, voltage, and resistance in series and parallel circuits.
Thinking Skill: Generating
Correct Answer: D
9. **Objective 10.03**
Analyze and measure the nature of power in an electrical circuit.

Thinking Skill: Applying
Correct Answer: B

10. **Objective 10.03**
Analyze and measure the nature of power in an electrical circuit.

Thinking Skill: Applying
Correct Answer: C

11. **Objective 10.03**
Analyze and measure the nature of power in an electrical circuit.

Thinking Skill: Applying
Correct Answer: A