This document is designed to help North Carolina educators teach the Common Core. NCDPI staff are continually updating and improving these tools to better serve teachers.

1st Grade Math Curriculum Crosswalk

The following document is to be used to compare the 2003 North Carolina Mathematics Standard Course of Study and the Common Core State Standards for Mathematics.

As noted in the Common Core State Standards for Mathematics document, the instructional time in Grade 1 should focus on four critical areas:
(1) developing understanding of addition, subtraction, and strategies for addition and subtraction within 20;
(2) developing understanding of whole number relationships and place value, including grouping in tens and ones;
(3) developing understanding of linear measurement and measuring lengths as iterating length units; and
(4) reasoning about attributes of, and composing and decomposing geometric shapes.

To download the Common Core State Standards, please visit http://www.corestandards.org/the-standards.

Important Note: The current SCoS will continue to be the taught and tested standards in the 2010-11 and 2011-12 school years. We expect the new Common Core standards to be taught and assessed in schools for the first time in the 2012-13 school year. That said, we are providing resources now and over the next two-years so that schools and teachers can get a head start on internalizing and planning to teach the new standards.
<table>
<thead>
<tr>
<th>NC SCOS</th>
<th>Common Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand</td>
<td>Object</td>
</tr>
<tr>
<td>Number & Operations</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NC SCOS</td>
<td>Common Core</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Strand</td>
<td>Domain</td>
</tr>
<tr>
<td>Object</td>
<td>Standard</td>
</tr>
<tr>
<td>d) Compare and order sets and numbers.</td>
<td>1.NBT.3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Build understanding of place value (ones, tens).</td>
<td>1.NBT.2.b</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>f) Estimate quantities fewer than or equal to 100.</td>
<td></td>
</tr>
<tr>
<td>g) Recognize equivalence in sets and numbers 1-99.</td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td>1.OA.5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.03</td>
<td>1.OA.1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NC SCOS</td>
<td>Common Core</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Strand</td>
<td>Domain</td>
</tr>
<tr>
<td></td>
<td>Text of objective</td>
</tr>
<tr>
<td>Operations & Algebraic Thinking</td>
<td>Represent and solve problems involving addition and subtraction.</td>
</tr>
<tr>
<td></td>
<td>Represent and solve problems involving addition and subtraction.</td>
</tr>
<tr>
<td></td>
<td>Understand subtraction as an unknown-addend problem. For example: subtract 10 – 8 by finding the number that makes 10 when added to 8.</td>
</tr>
<tr>
<td>Operations & Algebraic Thinking</td>
<td>Add and subtract within 20.</td>
</tr>
<tr>
<td></td>
<td>Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g. 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g. 13 - 4 = 13 – 3 – 1 = 10 – 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows 12 – 8 = 4); and creating equivalent but easier or known sums (e.g. adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13).</td>
</tr>
<tr>
<td>Operations & Algebraic Thinking</td>
<td>Work with addition and subtraction equations.</td>
</tr>
<tr>
<td></td>
<td>Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 + ? = 11, 5 = ___ - 3, 6 + 6 = ___.</td>
</tr>
<tr>
<td>NC SCOS</td>
<td>Common Core</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Domain</td>
<td>Cluster</td>
</tr>
<tr>
<td>Standard</td>
<td>Text of objective</td>
</tr>
<tr>
<td>Strand</td>
<td>Object</td>
</tr>
<tr>
<td>Geometry</td>
<td>1.OA.2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.G.3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations & Algebraic Thinking</td>
<td>1.OA.3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NC SCOS</td>
<td>Common Core</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Operations & Algebraic Thinking</td>
<td>Cluster</td>
</tr>
<tr>
<td>Domain</td>
<td>Text of objective</td>
</tr>
</tbody>
</table>
| 1.OA.6 | **Add and subtract within 20.**
Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g. 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g. 13 - 4 = 13 – 3 – 1 = 10 – 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows 12 – 8 = 4); and creating equivalent but easier or known sums (e.g. adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13). |
| **1.OA.7** | **Work with addition and subtraction equations.**
Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6 = 6, 7 = 8 – 1, 5 + 2 = 2 + 5, 4 + 1 = 5 + 2. |
| **1.OA.8** | **Work with addition and subtraction equations.**
Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 + ? = 11, 5 = ____ - 3, 6 + 6 = ____. |

This is important to develop the meaning of the “=” sign as the value of the number or expression on each side is the same as the other side. The equals sign does not mean “the answer is coming.”
<table>
<thead>
<tr>
<th>NC SCOS</th>
<th>Common Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand</td>
<td>Cluster</td>
</tr>
<tr>
<td>Number & Operations in Base Ten</td>
<td>Use place value understanding and properties of operations to add and subtract.</td>
</tr>
<tr>
<td>1.NBT.4</td>
<td>Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based upon place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a new ten.</td>
</tr>
<tr>
<td>1.NBT.5</td>
<td>Use place value understanding and properties of operations to add and subtract.</td>
</tr>
<tr>
<td>Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.</td>
<td></td>
</tr>
<tr>
<td>1.NBT.6</td>
<td>Use place value understanding and properties of operations to add and subtract.</td>
</tr>
<tr>
<td>Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range of 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.</td>
<td></td>
</tr>
<tr>
<td>NC SCOS</td>
<td>Common Core</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Strand</td>
<td>Object</td>
</tr>
<tr>
<td>Measurement</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>2.02</td>
</tr>
<tr>
<td>NC SCOS</td>
<td>Common Core</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Strand</td>
<td>Domain</td>
</tr>
<tr>
<td>Object</td>
<td>Standard</td>
</tr>
<tr>
<td>Text of objective</td>
<td>1.MD.2</td>
</tr>
<tr>
<td>Geometry</td>
<td>1.G.2</td>
</tr>
<tr>
<td>3.01</td>
<td></td>
</tr>
<tr>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>NC SCOS</td>
<td>Common Core</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Strand</td>
<td>Object</td>
</tr>
<tr>
<td>Data Analysis and Probability</td>
<td>4.01</td>
</tr>
<tr>
<td></td>
<td>4.02</td>
</tr>
<tr>
<td>Algebra</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>5.02</td>
</tr>
<tr>
<td></td>
<td>5.03</td>
</tr>
</tbody>
</table>